FOOD-BASED STRATEGIES FOR NUTRITIONAL EMPOWERMENT

As India celebrates Rashtriya Poshan Maah (National Nutrition Month) in September, Salome Yesudas highlights the importance of promoting food-based strategies for addressing the rising malnutrition levels in the country.

CONTEXT

Malnutrition — whether undernutrition, micronutrient deficiencies or overweight and obesity — is caused by a complex interplay of economic, social, environmental, and behavioural factors that prevent people from consuming and fully benefiting from healthy diets. The most immediate causes of undernutrition and micronutrient deficiencies are inadequate dietary intake and infectious disease. Inadequate dietary intake weakens the immune system and increases susceptibility to disease; infectious disease, in turn, increases the need for more nutrients and further weakens the immune system.

Tasting kichadi during recipe demonstration at Dumbriguda, Andhra Pradesh

There are three underlying causes of this vicious cycle:

- lack of availability or access to food (food insecurity);
- poor health triggered by poor water and sanitation and inadequate health services; and
- in the case of children, poor maternal and child-care practices, including inadequate breastfeeding and nutritious complementary feeding; and, for adults, poor food choices.

Of course, covert forces of social and economic underdevelopment and inequality often underpin these problems. A food-based dietary diversity strategy has social, cultural, economic, and environmental benefits. Agricultural diversity not only improves production but also enhances income generation and improves accessibility. Biodiverse crops will ensure sustainable diets that are environment healthy, strengthen local food systems by producing traditional/indigenous crops, and provide fodder for livestock. Home gardening, livestock production, aquaculture, and nutrition education will empower women to improve diet quality and nutritional status of the family. All these call for strengthening nutrition-sensitive extension and some ideas in this regard are discussed here.

Dialogue on local greens at Jawadu Hills, Tamil Nadu

PROMOTING DIETARY IMPROVEMENT THROUGH FOOD PRODUCTION AND CONSUMPTION

A balanced diet must contain sufficient fat, protein, energy and other key nutrients if dietary vitamin A is to be properly utilized by the body. A good daily dietary mix can be made up of a staple + pulse + an animal food + green leafy vegetables or an orange-coloured vegetable or fruit. Families should be encouraged to use all these foods to make a meal. Some examples are: staple + pulse + green leafy vegetables or an orange vegetable or fruit at one meal; staple + animal food + green leafy vegetable or an orange vegetable or fruit at another meal; addition of a small amount of fat or oil can provide extra energy if none of the other foods in the meal is energy-rich.

Inclusion of greens leaves, rajmah, finger millet, jamun, add five colours to the meal without much effort. Mono coloured diets of white rice and dal make up a huge proportion of our meal; but without spending too much we can easily change the variety in our plates if only we look for local foods.

Incorporating chicken or fish, liver or small dried fish into plant-based diets can result in marked increases in Fe and Zn absorption. Food preparation methods such as steaming and stir frying are desirable practices for increasing micronutrient bioavailability, and should be promoted accordingly. The addition of appropriate quantities of fat or oil should also be encouraged when preparing foods containing provitamin A-rich sources, in order to facilitate their absorption. The levels and bioavailability of carotenoids in green leafy vegetables, sweet potatoes, papaya, carrot and other

vegetables vary greatly, and it is therefore advisable to promote the consumption of those varieties that contain higher levels.

Foods prepared with appropriate combinations of such vegetables, along with staple grains and/or pre-formed vitamin A sources such as liver or fish, enhance the vitamin A quality of the meals. Malting, fermenting, soaking and germinating of grains and legumes, all fairly typical household practices, have been shown to remove anti-nutrients such as saponins and polyphenols, thus enhancing nutrient bioavailability (Nkhata 2018).

However, lack of awareness about these different food groups, their nutrient status and how different types of processing and cooking enable or disable availability of different nutrients is a major challenge in India, and much more effort is needed, both in rural and urban areas, so as to promote nutritional understanding among the masses.

PROMOTING TRADITIONAL FOODS

The traditional food systems in India have not been researched to its full potential even though methodology for documenting traditional food systems of indigenous populations has been set out by international agencies and civil society organisations. Several indigenous populations have also been studied on their food systems. One can also refer to the AESA Blog 135 (September 2020) 'Local Food Systems for Food and Nutrition Security: Implications for Extension and Advisory Services' for more details on the topic.

Some of the studies can be accessed from the evidence which indicates that dietary diversity is strongly and positively associated with child nutritional status and growth, even after socio-economic factors have been controlled (see the references given for further reading).

In my own research studies in different states of India I have found many varieties of foods indicating a rich diversity which is available around the year if you look at them with interest. Information related to these are given at the end of the blog (Annexure: Table 1, 2 and 3)

To promote traditional foods, one should organise several activities. These include:

- Recipe demonstrations;
- Cooking competitions;
- Traditional recipe books in local languages;
- Sample menu sheets based on local foods;
- Raw food displays with nutritional profiles;
- Display materials on the functions of nutrients in our body;
- Field visits to local forest/agriculture fields to identify edible plants, herbs, fruit trees, mushrooms with local elderly resource persons;
- Wall paintings of local fruits/greens/tubers;
- Wall paintings of local fish, snail, prawns, crab, etc.;

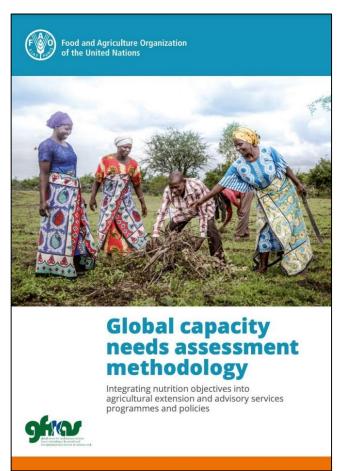
Forest fruits display at raw food exhibition Muniguda, Odisha

- Local radio talk shows/TV shows/newspaper articles;
- Helping to create Food Diversity Registers at panchayat level for land- and water-based edible foods (forest, streams, tanks, rivers, agriculture fields, etc.);
- Drawing food sources maps of every village and painting the same on prominent walls.

KEY ROLE OF EXTENSION IN PROMOTING NUTRITION

If the knowledge is to be translated into practice, Extension and Advisory Services (EAS) must play a very big role, and for that we need to strengthen and fine-tune their knowledge of nutrition as well as enhance their communication skills. Apart from the field staff engaged in EAS delivery in the agriculture sector, we should also enhance the knowledge on agricultural interventions that can address nutrition among the field staff of other sectors too, such as Health (ASHA workers) and Mother and Child Welfare (Anganwadi workers), and State Rural Livelihood Missions (SRLM). But to do this we need to have a flexible adaptive curricula and learning modules to support the training of these staff together with a mechanism to develop Training of Trainers (ToT) in these areas in these agencies.

Sharing experiences on "Working with women in agri-food systems" at the IRRI-CRISP Training on Designing and Delivering Gender Responsive Extension and Advisory Services (EAS), Bhubaneswar, Odisha


The real challenge is to train EAS, ICDS staff (anganwadi worker & cook), Health workers (Auxiliary Nurse-Midwife and ASHA workers), and Village Extension Workers (including para extension workers associated with the Department of Agriculture and Rural Development/SRLM) on basics of food and nutrition, emphasising local foods and their merits. In addition, sensitizing has to be also carried out at a higher level so as to stimulate cooperation from concerned authorities of these 3-4 departments. In addition, Agriculture, Horticulture, Animal Husbandry, Fisheries and other line departments also need to be sensitized to promote nutrition rich local foods and traditional varieties. Quite often each department works for meeting its own targets, thereby sometimes adversely affecting nutrition outcomes.

Organising short duration training programmes for in-service personnel and including the topic of nutrition-sensitive agriculture as a compulsory subject in induction trainings is a must. Outcomes of all development schemes, programmes or projects should be analysed through a nutrition lens to see how far their interventions enhance the community's food and nutrition security or not. Often times policy makers and project designers think it will happen automatically which is not the case in most

projects. Nutritional outcomes are also important as financial outcomes. *Grama sabhas* (meetings organised by local governments + line departments at the village level) must include food and nutrition security as part of the agenda for discussion regularly.

We talk so much about convergence, networking and cooperation among departments, schemes and programmes. Despite all that anaemia and malnourishment are still haunting us after all these years and programmes. A lot needs to be done in strengthening convergence so as to achieve better nutrition.

It's time to think of locally available food-based menus to improve overall nutrition in a sustainable manner by educating mothers and adolescent girls (future mothers). Supporting small farmers and women's groups in setting up kitchen gardens and nutrition gardens is also important. The Agricultural Technology Management Agency (ATMA) and Krishi Vigyan Kendra's (KVKs) should play a major role in promoting these initiatives. Providing sample

menus, organising demonstrations on kitchen/nutrition gardens, and customising plans according to the resources available at the farm/community level should be a priority for ATMAs and KVKs.

Strengthening Antenatal Care (ANC), immunization, parasitic control, hygiene and related activities and services for the most disadvantaged communities in rural and hilly areas is another area that deserves special attention. Regular dialogue with vulnerable groups (reproductive age women, mothers, and pregnant women) is critical so that they can understand the nutritional needs of the family and enable them to make wise food choices for the good of their children and themselves.

CONCLUSION

To achieve sustainable food and nutritional security, governments must look at several options beyond bio-fortification and industrial fortification. There are several food-based strategies for promoting dietary improvements which could come from different sources, namely, fields, farms, forests, neighbourhoods and water bodies present locally, and these can make the communities independent and responsible for maintaining the natural resources that can support year-round availability of nutritious food. Promoting a local food diversity-based strategy is the best option that we should prioritise for becoming a healthy nation.

REFERENCES FOR FURTHER READING

Burlingame B and Dernini S. 2012. Sustainable diets and biodiversity directions and solutions for policy, research and action. Rome: FAO. http://www.fao.org/3/i3004e/i3004e.pdf

McGill University. No date. Centre for Indigenous Peoples' Nutrition and Environment (CINE). Online Resources. https://www.mcgill.ca/cine/resources

Nkhata SG, Ayua E, Kamau EH and Shingiro JB. 2018. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition 6(8):2446-58.

FAO. No date. Planning and coordinating food-based strategies. http://www.fao.org/3/x0245e/x0245e03.html

FAO and GFRAS (2021) Global capacity needs assessment methodology: Integrating nutrition objectives into agricultural extension and advisory services programmes and policies http://www.fao.org/3/cb2069en/cb2069en.pdf)

FAO 2021 Making Extension and Advisory Services Nutrition-Sensitive: The link between agriculture and human nutrition http://www.fao.org/documents/card/en/c/cb3841en)

Publications from ICMR-National Institute of Nutrition. Hyderabad, India. https://www.nin.res.in/bookrecommendations.html

Yesudas S 2020. Local food systems for food and nutrition security: Implications for Extension and Advisory Services. AESA BLOG 135. September 2020. https://www.aesanetwork.org/blog-135-local-food-systems-for-food-and-nutrition-security-implications-for-extension-and-advisory-services/

Tontisirin K, Nantel G and Bhattacharjee L. 2002. Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proceedings of the Nutrition Society 61(2):243-50.

Ms Salome Yesudas is an independent researcher who has worked very closely with different communities in many states of India. She has also worked with the Global Health Project led by McGill University, Canada, in 12 countries on all the continents on local food systems. She continues to work with marginalised communities from different regions on local food systems for food and nutrition security. (salomeyesudas@hotmail.com)

Annexure

Table 1. Cultivated and uncultivated foods list (from fields, forests, neighbourhoods, and water bodies)*

Food group	Dindori District	Gadchiroli Rayagada,		Sanga Reddy	
	Madhya	District,	Rourkela, Gudari	District Telangana	
	Pradesh	Maharashtra	District,Odisha		
Grains	11	8	8	11	
Pulses	13	14	10	10	
Roots and tubers	25	20	30	5	
Fruits	39	40	40	43	
Greens	34	33	32	30	
Vegetables	22	23	28	73	
Spices	12	14	12	16	
Oil seeds	10	12	10	12	
Non veg	34	28	40	28	
Fish & other foods	17	25	20	3	
Mushrooms		30		2	

^{*}Study areas involved a few villages from these districts. As an example, a fruit calendar is attached below (Tables 2 and 3).

Table 2. Fruit calendar – January to June (Dindori District, Madhya Pradesh, India)

LOCAL NAME	Scientific name	Jan	Feb	Mar	Apl	May	June
TEMBRU	Diospyrus		tembru	tembru	tembru	tembr	
	melanoxylon					u	
BOR	Ziziphus mauritiana	bor	bor				
CHAR	Buchanania				char	char	
	cochinchinensis						
BIBBA	Semecarpus				bibba	bibba	
	anacardium						
JAMBUL	Syzygium cumini						jambu
SITHAPHAL	Annona squamosa						
AMBA	Mangifera indica				amba	amba	amba
IMILY	Tamarindus indica	imily	imily	Imily	Imily	imily	imily
JAM	Psidium guajava						jam
PAPAYA	Carica papaya	papaya	papaya	papaya	papaya	papaya	papaya
KAKADI	Cucumis sativus		tembru	tembru	tembru		
NIMBU	Citus limon					nimbu	
KAKAI	Floucourtia indica	bor	bor				
YERONI	Ziziphus oenoplia				char		
BEHDA	Terminalia bellirica				bibba	beda	
BEL	Aegle marmelos					bel	bel
SHINDI	Phoenix sylvestris					shindi	
TAD	Borassus flabellifer					tad	
VARKALI	Capparis zeylanica				amba		
AQUAL	Alangium salvifolium	imily	imily	Imily	Imily	aqual	aqual
RAMPHAL	Annona reticulata					ramph	
						al	
KARBHUJ						karbhu	
						j	

THURBUJ	Citrulus lanatus			thurbu	
				j	
PENDRA	Not identified		nimbu		pendra
DANGRU	Not known			dangru	
KUDA	Holarrhena pubescens			kuda	kuda
BARGAT	Ficus benghalensis		Beda	mugna	mugna
HETI	Sesbania grandiflora				
KHJOP	Schleichera oleosa		Shindig	khjop	khjop
PANAS	Artocarpus		Tad	panas	panas
	heterophyllus				
UMRUN	Ficus racemose	varkali	varkali	umrun	
KOVAT	Limonia acidissima			kovat	
SHELVAT	Cordia dichotoma		ramphal	shelvat	
MAHUR	Bauhinia vahlii		karbhuj	bahuni	
				а	
				vahalia	

Table 3. Fruit Calendar – July to December

LOCAL	Scientific name	July	Aug	Sept	Oct	Nov	Dec
NAME							
TEMBRU	Diospyrus melanoxylon						
OVLA	Phyllanthus emblica				ovla	ovla	ovla
JAMBUL	Syzygium cumini	jambu					
JONDURILI			jondurili	jondurili			
SITHAPHAL	Annona squamosa				sithaphal	sithaphal	
AMBA	Mangifera indica						
IMILY	Tamarindus indica	imily	imily	imily	imily	Imily	imily
KELA	Musa paradisiaca						
JAM	Psidium guajava	jam	jam	jam	jam	jam	jam
PAPAYA	Carica papaya	papaya	papaya	papaya	papaya	papaya	papaya
KAKADI	Cucumis sativus		kakadi	kakadi			
NIMBU	Citus limon					nimbu	nimbu
KAKAI	Floucourtia indica	kakai					
YERONI	Ziziphus oenoplia					Yeroni	yeroni
BEHDA	Terminalia bellirica						
VARKU	Variety of cucumis			varku	varku		
KUDA	Holarrhena pubescens	kuda	kuda	kuda			
MUGNA	Ficus benghalensis	mugna	mugna	mugna	mugna	mugna	mugna
HETI	Sesbania grandiflora				heti	Heti	
PANAS	Artocarpus	panas					
	heterophyllus						
UMRUN	Ficus racemose				umrun	umrun	
KARVAN	Carrisa congesta				karvan	karvan	

AESA Secretariat: Centre for Research on Innovation and Science Policy (CRISP),
Road No 10, Banjara Hills, Hyderabad 500034, India
www.aesanetwork.org Email: aesanetwork@gmail.com